z-logo
Premium
Hydrological effects of climate change, groundwater withdrawal, and land use in a small Korean watershed
Author(s) -
Lee Kil Seong,
Chung EunSung
Publication year - 2007
Publication title -
hydrological processes
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.222
H-Index - 161
eISSN - 1099-1085
pISSN - 0885-6087
DOI - 10.1002/hyp.6513
Subject(s) - environmental science , watershed , groundwater , precipitation , hydrology (agriculture) , surface runoff , streamflow , climate change , monsoon , climatology , drainage basin , geography , meteorology , ecology , geology , geotechnical engineering , cartography , machine learning , computer science , biology
The effects of variability in climate and watershed (groundwater withdrawal and land use) on dry‐weather streamflows were investigated using SWAT (Soil and Water Assessment Tool). The equation to predict the total runoff (TR) using climate data was derived from simulation results for 30 years by multiple regression analysis. These may be used to estimate effects of various climate variations (precipitation during the dry period, precipitation during the previous wet period, solar radiation, and maximum temperature). For example, if daily average maximum temperature increases by 3 °C, TR during the dry period will decrease by 27·9%. Similarly, groundwater withdrawals strongly affect streamflow during the dry period. However, land use changes (increasing urbanization) within the forested watershed do not appear to significantly affect TR during the dry period. Finally, a combined equation was derived that describes the relationships between the TR during the dry period and the climate, groundwater withdrawal and urban area proportion in a small monsoon watershed. This equation will be effective to predict the water availability during the dry periods in the future since it is closely related to changes of temperature, precipitation, solar radiation, urban area ratio, and groundwater withdrawal quantity. Copyright © 2007 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here