Premium
Use of turbidometry to characterize suspended sediment and phosphorus fluxes in the Lake Tahoe basin, California, USA
Author(s) -
Stubblefield Andrew P.,
Reuter John E.,
Dahlgren Randy A.,
Goldman Charles R.
Publication year - 2006
Publication title -
hydrological processes
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.222
H-Index - 161
eISSN - 1099-1085
pISSN - 0885-6087
DOI - 10.1002/hyp.6234
Subject(s) - turbidity , snowmelt , sediment , environmental science , rating curve , hydrology (agriculture) , turbidite , total suspended solids , watershed , flushing , water quality , drainage basin , snow , geology , ecology , geomorphology , oceanography , environmental engineering , medicine , chemical oxygen demand , geotechnical engineering , cartography , machine learning , endocrinology , wastewater , computer science , geography , biology
Abstract The efficacy of in‐stream nephelometric turbidometry as a surrogate for total suspended solids (TSS) and total phosphorus (TP) concentrations was evaluated for use in low turbidity (<50 NTU) subalpine watersheds at Lake Tahoe, California–Nevada, USA. Continuous turbidity records for the 1999, 2000 and 2001 snowmelt seasons and data from water quality samples (1982–2000) were examined to determine watershed sediment delivery dynamics. Strong correlations were found between turbidity and both TSS and TP concentration. The strong correlation indicates that turbidity can serve as a good surrogate for direct measurement in these watersheds. The watersheds displayed clockwise hysteresis: sediment flushing and depletion, on daily, seasonal and decadal time‐scales. The hysteresis curves had strong concave shapes, indicating a sensitive response to peak flow. A pronounced seasonal trend was observed for the ratio of suspended sediment concentration (SSC)/discharge over time, indicating early season flushing of available sediment. Significant linear relationships ( p < 0·05) were found for 12 of 17 years. Comparison of annual sediment rating curve coefficients indicated smaller coefficients during high sediment loading years and in the years following. The smaller coefficients are evidence of sediment depletion during high flow years. The effect of hysteresis on monitoring methods was illustrated by comparing turbidity estimates of TSS load with sediment rating curve estimates of SSC. After accounting for differences in SSC/TSS methods of analysis, daily loads calculated with turbidity methods were 58–98% of rating curve estimates for the spring snowmelt seasons of 1999–2001. Copyright © 2006 John Wiley & Sons, Ltd.