z-logo
Premium
Assessment of climate‐change impacts on alpine discharge regimes with climate model uncertainty
Author(s) -
Horton Pascal,
Schaefli Bettina,
Mezghani Abdelkader,
Hingray Benoît,
Musy André
Publication year - 2006
Publication title -
hydrological processes
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.222
H-Index - 161
eISSN - 1099-1085
pISSN - 0885-6087
DOI - 10.1002/hyp.6197
Subject(s) - hadcm3 , environmental science , glacier , climate change , precipitation , snowmelt , meltwater , climate model , surface runoff , climatology , snow , downscaling , greenhouse gas , global warming , transient climate simulation , hydrology (agriculture) , physical geography , general circulation model , geology , meteorology , geography , gcm transcription factors , ecology , oceanography , geotechnical engineering , biology
This study analyses the uncertainty induced by the use of different state‐of‐the‐art climate models on the prediction of climate‐change impacts on the runoff regimes of 11 mountainous catchments in the Swiss Alps having current proportions of glacier cover between 0 and 50%. The climate‐change scenarios analysed are the result of 19 regional climate model (RCM) runs obtained for the period 2070–2099 based on two different greenhouse‐gas emission scenarios (the A2 and B2 scenarios defined by the Intergovernmental Panel on Climate Change) and on three different coupled atmosphere‐ocean general circulation models (AOGCMs), namely HadCM3, ECHAM4/OPYC3 and ARPEGE/OPA. The hydrological response of the study catchments to the climate scenarios is simulated through a conceptual reservoir‐based precipitation‐runoff transformation model called GSM‐SOCONT. For the glacierized catchments, the glacier surface corresponding to these future scenarios is updated through a conceptual glacier surface evolution model. The results obtained show that all climate‐change scenarios induce, in all catchments, an earlier start of the snowmelt period, leading to a shift of the hydrological regimes and of the maximum monthly discharges. The mean annual runoff decreases significantly in most cases. For the glacierized catchments, the simulated regime modifications are mainly due to an increase of the mean temperature and the corresponding impacts on the snow accumulation and melting processes. The hydrological regime of the catchments located at lower altitudes is more strongly affected by the changes of the seasonal precipitation. For a given emission scenario, the simulated regime modifications of all catchments are highly variable for the different RCM runs. This variability is induced by the driving AOGCM, but also in large part by the inter‐RCM variability. The differences between the different RCM runs are so important that the predicted climate‐change impacts for the two emission scenarios A2 and B2 are overlapping. Copyright © 2006 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here