Premium
Snow density variations: consequences for ground‐penetrating radar
Author(s) -
Lundberg A.,
RichardsonNäslund C.,
Andersson C.
Publication year - 2005
Publication title -
hydrological processes
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.222
H-Index - 161
eISSN - 1099-1085
pISSN - 0885-6087
DOI - 10.1002/hyp.5944
Subject(s) - snowpack , snow , snowmelt , ground penetrating radar , surface runoff , environmental science , radar , water equivalent , range (aeronautics) , hydrology (agriculture) , geology , atmospheric sciences , meteorology , geomorphology , geotechnical engineering , geography , telecommunications , ecology , materials science , composite material , biology , computer science
Abstract Reliable hydrological forecasts of snowmelt runoff are of major importance for many areas. Ground‐penetrating radar (GPR) measurements are used to assess snowpack water equivalent for planning of hydropower production in northern Sweden. The travel time of the radar pulse through the snow cover is recorded and converted to snow water equivalent (SWE) using a constant snowpack mean density from the drainage basin studied. In this paper we improve the method to estimate SWE by introducing a depth‐dependent snowpack density. We used 6 years measurements of peak snow depth and snowpack mean density at 11 locations in the Swedish mountains. The original method systematically overestimates the SWE at shallow depths (+25% for 0·5 m) and underestimates the SWE at large depths (−35% for 2·0 m). A large improvement was obtained by introducing a depth–density relation based on average conditions for several years, whereas refining this by using separate relations for individual years yielded a smaller improvement. The SWE estimates were substantially improved for thick snow covers, reducing the average error from 162 ± 23 mm to 53 ± 10 mm for depth range 1·2–2·0 m. Consequently, the introduction of a depth‐dependent snow density yields substantial improvements of the accuracy in SWE values calculated from GPR data. Copyright © 2005 John Wiley & Sons, Ltd.