Premium
Rainfall‐runoff modelling using artificial neural networks technique: a Blue Nile catchment case study
Author(s) -
Antar Mamdouh A.,
Elassiouti Ibrahim,
Allam Mohamed N.
Publication year - 2006
Publication title -
hydrological processes
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.222
H-Index - 161
eISSN - 1099-1085
pISSN - 0885-6087
DOI - 10.1002/hyp.5932
Subject(s) - surface runoff , drainage basin , hydrology (agriculture) , environmental science , precipitation , calibration , hydrological modelling , artificial neural network , runoff model , meteorology , geology , computer science , geography , climatology , mathematics , statistics , ecology , cartography , machine learning , geotechnical engineering , biology
A rainfall‐runoff model based on an artificial neural network (ANN) is presented for the Blue Nile catchment. The best geometry of the ANN rainfall‐runoff model in terms of number of hidden layers and nodes is identified through a sensitivity analysis. The Blue Nile catchment (about 300 000 km 2 ) in the Nile basin is selected here as a case study. The catchment is classified into seven subcatchments, and the mean areal precipitation over those subcatchments is computed as a main input to the ANN model. The available daily data (1992–99) are divided into two sets for model calibration (1992–96) and for validation (1997–99). The results of the ANN model are compared with one of physical distributed rainfall‐runoff models that apply hydraulic and hydrologic fundamental equations in a grid base. The results over the case study area and the comparative analysis with the physically based distributed model show that the ANN technique has great potential in simulating the rainfall‐runoff process adequately. Because the available record used in the calibration of the ANN model is too short, the ANN model is biased compared with the distributed model, especially for high flows. Copyright © 2005 John Wiley & Sons, Ltd.