Premium
Measuring thaw depth beneath peat‐lined arctic streams using ground‐penetrating radar
Author(s) -
Bradford John H.,
McNamara James P.,
Bowden William,
Gooseff Michael N.
Publication year - 2005
Publication title -
hydrological processes
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.222
H-Index - 161
eISSN - 1099-1085
pISSN - 0885-6087
DOI - 10.1002/hyp.5781
Subject(s) - permafrost , ground penetrating radar , geology , streams , remote sensing , hydrology (agriculture) , radar , arctic , geomorphology , peat , environmental science , oceanography , geotechnical engineering , telecommunications , computer network , computer science , ecology , biology
In arctic streams, depth of thaw beneath the stream channel is likely a significant parameter controlling hyporheic zone hydrology and biogeochemical cycling. As part of an interdisciplinary study of this system, we conducted a field investigation to test the effectiveness of imaging substream permafrost using ground‐penetrating radar (GPR). We investigated three sites characterized by low‐energy water flow, organic material lining the streambeds, and water depths ranging from 0·2 to 2 m. We acquired data using a 200 MHz pulsed radar system with the antennas mounted in the bottom of a small rubber boat that was pulled across the stream while triggering the radar at a constant rate. We achieved excellent results at all three sites, with a clear continuous image of the permafrost boundary both peripheral to and beneath the stream. Our results demonstrate that GPR can be an effective tool for measuring substream thaw depth. Copyright © 2005 John Wiley & Sons, Ltd.