Premium
Soil frost effects on soil water and runoff dynamics along a boreal forest transect: 1. Field investigations
Author(s) -
Nyberg Lars,
Stähli Manfred,
Mellander PerErik,
Bishop Kevin H.
Publication year - 2001
Publication title -
hydrological processes
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.222
H-Index - 161
eISSN - 1099-1085
pISSN - 0885-6087
DOI - 10.1002/hyp.256
Subject(s) - snowmelt , soil water , surface runoff , hydrology (agriculture) , transect , groundwater , environmental science , permafrost , snow , soil horizon , water content , soil science , geology , geomorphology , geotechnical engineering , ecology , oceanography , biology
To determine how soil frost changes flowpaths of runoff water along a hillslope, a transect consisting of four soil profiles directed towards a small stream in a mature forest stand was investigated at Svartberget, near Vindeln in northern Sweden. Soil temperature, unfrozen water content, groundwater level and snow depth were investigated along the transect, which started at the riparian peat, and extended 30 m upslope into mineral soils. The two, more organic‐rich profiles closest to the stream had higher water retention and wetter autumn conditions than the sandy mineral soils further upslope. The organic content of the soil influenced the variation in frost along the transect. The first winter (1995–96) had abnormally low snow precipitation, which gave a deep frost down to 40–80 cm, whereas the two following winters had frost depths of 5–20 cm. During winter 1995–96, the two organic profiles close to the stream had a shallower frost depth than the mineral soil profile higher upslope, but a considerably larger amount of frozen water. The fraction of water that did not freeze despite several minus degrees in the soil was 5–7 vol.% in the mineral soil and 10–15 vol.% in the organic soil. From the measurements there were no signs of perched water tables during any of the three snowmelt periods, which would have been strong evidence for changed water flowpaths due to soil frost. When shallow soil layers became saturated during snowmelt, especially in 1997 and 1998, it was because of rising groundwater levels. Several rain on frozen ground events during spring 1996 resulted in little runoff, since most of the rain either froze in the soil or filled up the soil water storage. Copyright © 2001 John Wiley & Sons, Ltd.