z-logo
Premium
Topographic controls on the chemistry of subsurface stormflow
Author(s) -
Welsch Daniel L.,
Kroll Charles N.,
McDonnell Jeffrey J.,
Burns Douglas A.
Publication year - 2001
Publication title -
hydrological processes
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.222
H-Index - 161
eISSN - 1099-1085
pISSN - 0885-6087
DOI - 10.1002/hyp.247
Subject(s) - hydrology (agriculture) , surface runoff , streamflow , antecedent moisture , groundwater , environmental science , watershed , flushing , storm , precipitation , soil water , drainage basin , geology , soil science , oceanography , meteorology , runoff curve number , medicine , ecology , physics , geotechnical engineering , cartography , machine learning , endocrinology , computer science , geography , biology
Models are needed that describe how topography and other watershed characteristics affect the chemical composition of runoff waters, yet little spatially distributed data exist to develop such models. A topographically driven flushing mechanism for nitrate (NO 3 − ) and dissolved organic carbon has been described in recent literature; however, this mechanism has not yet been thoroughly tested. A 24 ha catchment in the Catskill Mountains of New York was clearcut in the winter of 1996–97, resulting in elevated NO 3 − concentrations in soil water, groundwater and streamflow. We sampled shallow subsurface stormflow (SSSF) and streamflow six times during the spring and summer of 1998, 1 year after the harvest. We used a spatially distributed network of piezometers to investigate the relationship between topography and SSSF chemistry. Several indices of topography were computed, including the commonly employed topographic index of Beven and Kirkby (1979; Hydrological Sciences Bulletin 24 : 43–69). Topographic index was positively correlated with NO 3 − concentrations in SSSF. The strength of the NO 3 − –topography relationship was best explained by antecedent soil temperature and antecedent precipitation conditions. Results suggest a topographically driven flushing of high NO 3 − shallow soil at the site during storm events. Copyright © 2001 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here