z-logo
Premium
Rainfall, runoff and shallow groundwater response in a mixed‐use, agro‐forested watershed of the northeast, USA
Author(s) -
Gootman Kaylyn S.,
Hubbart Jason A.
Publication year - 2021
Publication title -
hydrological processes
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.222
H-Index - 161
eISSN - 1099-1085
pISSN - 0885-6087
DOI - 10.1002/hyp.14312
Subject(s) - hydrology (agriculture) , groundwater , surface runoff , environmental science , water table , watershed , streamflow , groundwater flow , groundwater discharge , precipitation , streams , baseflow , aquifer , drainage basin , geology , ecology , geography , computer network , geotechnical engineering , cartography , machine learning , meteorology , computer science , biology
Stream and shallow groundwater responses to rainfall are characterized by high spatial variability, but hydrologic response variability across small, agro‐forested sub‐catchments remains poorly understood. Conceivably, improved understanding in this regard will result in agricultural practices that more effectively limit nutrient runoff, erosion, and pollutant transport. Terrestrial hydrologic response approaches can provide valuable information on stream‐aquifer connectivity in these mixed‐use watersheds. A study was implemented, including eight stream and co‐located shallow groundwater monitoring sites, in a small sub‐catchment of the Chesapeake Bay watershed in the Northeast, USA to advance this ongoing need. During the study period, 100 precipitation‐receiving days (i.e., 24‐hour periods, midnight to midnight) were observed. On average, the groundwater table responded more to precipitation than stream stage (level change of 0.03 vs. 0.01 m and rainfall‐normalized level change estimate of 3.81 vs. 3.37). Median stream stage responses, groundwater table responses, and response ratios were significantly different between sub‐catchments ( n  = 8; p  < 0.001). Study area average precipitation thresholds for runoff and shallow groundwater flow were 2.8 and 0.6 cm, respectively. Individual sub‐catchment thresholds ranged from 0.5 to 2.8 cm for runoff and 0.2 to 1.3 cm for shallow groundwater flow. Normalized response lag times between the stream and shallow groundwater ranged from −0.50 to 3.90 s·cm −1 , indicating that stormflow in one stream section was regulated by groundwater flow during the period of study. The observed differences in hydrologic responses to precipitation advance future modelling efforts by providing examples of how terrestrial groundwater response methods can be used to investigate sub‐catchment spatial variability in stream‐aquifer gradients with co‐located shallow groundwater and stream stage data. Additionally, results demonstrate asynchronous stream and shallow groundwater responses on precipitation‐receiving days, which may hold important implications for modelling hydrologic and biogeochemical fate and transport processes in small, agro‐forested catchments.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here