Premium
Long‐term shifts in feedbacks among glacier surface change, melt generation and runoff, McMurdo Dry Valleys, Antarctica
Author(s) -
Bergstrom Anna,
Gooseff Michael,
Fountain Andrew,
Hoffman Matthew
Publication year - 2021
Publication title -
hydrological processes
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.222
H-Index - 161
eISSN - 1099-1085
pISSN - 0885-6087
DOI - 10.1002/hyp.14292
Subject(s) - meltwater , glacier , surface runoff , geology , snow , glacier mass balance , snowmelt , climate change , cryosphere , climatology , atmospheric sciences , environmental science , geomorphology , oceanography , sea ice , ecology , biology
Glaciers of the McMurdo dry valleys (MDVs) Antarctica are the main source of streamflow in this polar desert. Because summer air temperatures hover near 0°C small changes in the energy balance strongly affect meltwater generation. Here we demonstrate that increased surface roughness, which alters the turbulent transfer of energy between the ice surface and atmosphere, yields a detectable increase in meltwater runoff. At low elevations on the glaciers, basin‐like topography became significantly rougher over 13 years between repeat lidar surveys, yielding greater melt. In contrast, the smoother ice at higher elevation exhibited no detectable change in roughness. We pose a conceptual model of the cycle of glacier surface change as a result of climate forcing whereby glacier surfaces transition from being dominated by sublimation to becoming increasingly melt‐dominated, which is reversible under prolonged cool periods. This research advances our understanding of warm season effects on polar glaciers.