z-logo
Premium
Beaver dams attenuate flow: A multi‐site study
Author(s) -
Puttock Alan,
Graham Hugh A.,
Ashe Josie,
Luscombe David J.,
Brazier Richard E.
Publication year - 2021
Publication title -
hydrological processes
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.222
H-Index - 161
eISSN - 1099-1085
pISSN - 0885-6087
DOI - 10.1002/hyp.14017
Subject(s) - beaver , environmental science , hydrology (agriculture) , riparian zone , flood myth , wetland , storm , ecosystem , riparian buffer , floodplain , streams , castor canadensis , ecology , geography , geology , habitat , biology , geotechnical engineering , computer network , archaeology , meteorology , computer science
Beavers can profoundly alter riparian environments, most conspicuously by creating dams and wetlands. Eurasian beaver ( Castor fiber ) populations are increasing and it has been suggested they could play a role in the provision of multiple ecosystem services, including natural flood management. Research at different scales, in contrasting ecosystems is required to establish to what extent beavers can impact on flood regimes. Therefore, this study determines whether flow regimes and flow responses to storm events were altered following the building of beaver dams and whether a flow attenuation effect could be significantly attributed to beaver activity. Four sites were monitored where beavers have been reintroduced in England. Continuous monitoring of hydrology, before and after beaver impacts, was undertaken on streams where beavers built sequences of dams. Stream orders ranged from 2nd to 4th, in both agricultural and forest‐dominated catchments. Analysis of >1000 storm events, across four sites showed an overall trend of reduced total stormflow, increased peak rainfall to peak flow lag times and reduced peak flows, all suggesting flow attenuation, following beaver impacts. Additionally, reduced high flow to low flow ratios indicated that flow regimes were overall becoming less “flashy” following beaver reintroduction. Statistical analysis, showed the effect of beaver to be statistically significant in reducing peak flows with estimated overall reductions in peak flows from −0.359 to −0.065 m 3 s −1 across sites. Analysis showed spatial and temporal variability in the hydrological response to beaver between sites, depending on the level of impact and seasonality. Critically, the effect of beavers in reducing peak flows persists for the largest storms monitored, showing that even in wet conditions, beaver dams can attenuate average flood flows by up to ca. 60%. This research indicates that beavers could play a role in delivering natural flood management.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here