Premium
Predicting quantiles of water quality from catchment characteristics
Author(s) -
Guo Danlu,
Liu Shuci,
Singh Dhananjay,
Western Andrew W.
Publication year - 2021
Publication title -
hydrological processes
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.222
H-Index - 161
eISSN - 1099-1085
pISSN - 0885-6087
DOI - 10.1002/hyp.13996
Subject(s) - environmental science , quantile , spatial variability , hydrology (agriculture) , water quality , total suspended solids , drainage basin , statistics , environmental engineering , mathematics , geography , ecology , geology , chemical oxygen demand , geotechnical engineering , cartography , wastewater , biology
Abstract Water quality is often highly variable both in space and time, which poses challenges for modelling the more extreme concentrations. This study developed an alternative approach to predicting water quality quantiles at individual locations. We focused on river water quality data that were collected over 25 years, at 102 catchments across the State of Victoria, Australia. We analysed and modelled spatial patterns of the 10th, 25th, 50th, 75th and 90th percentiles of the concentrations of sediments, nutrients and salt, with six common constituents: total suspended solids (TSS), total phosphorus (TP), filterable reactive phosphorus (FRP), total Kjeldahl nitrogen (TKN), nitrate‐nitrite (NO x ), and electrical conductivity (EC). To predict the spatial variation of each quantile for each constituent, we developed statistical regression models and exhaustively searched through 50 catchment characteristics to identify the best set of predictors for that quantile. The models predict the spatial variation in individual quantiles of TSS, TKN and EC well (66%–96% spatial variation explained), while those for TP, FRP and NO x have lower performance (37%–73% spatial variation explained). The most common factors that influence the spatial variations of the different constituents and quantiles are: annual temperature, percentage of cropping land area in catchment and channel slope. The statistical models developed can be used to predict how low‐ and high‐concentration quantiles change with landscape characteristics, and thus provide a useful tool for catchment managers to inform planning and policy making with changing climate and land use conditions.