Premium
Geostatistical analysis and conditional simulation for estimating the spatial variability of hydraulic conductivity in the Choushui River alluvial fan, Taiwan
Author(s) -
Jang ChengShin,
Liu ChenWuing
Publication year - 2004
Publication title -
hydrological processes
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.222
H-Index - 161
eISSN - 1099-1085
pISSN - 0885-6087
DOI - 10.1002/hyp.1397
Subject(s) - kriging , hydraulic conductivity , spatial variability , calibration , geostatistics , realization (probability) , variogram , gaussian , environmental science , statistics , soil science , hydrology (agriculture) , mathematics , geology , geotechnical engineering , physics , quantum mechanics , soil water
This work evaluated the spatial variability and distribution of heterogeneous hydraulic conductivity ( K ) in the Choushui River alluvial fan in Taiwan, using ordinary kriging (OK) and mean and individual sequential Gaussian simulations (SGS). A baseline flow model constructed by upscaling parameters was inversely calibrated to determine the pumping and recharge rates. Simulated heads using different K realizations were then compared with historically measured heads. A global/local simulated error between simulated and measured heads was analysed to assess the different spatial variabilities of various estimated K distributions. The results of a MODFLOW simulation indicate that the OK realization had the smallest sum of absolute mean simulation errors (SAMSE) and the SGS realizations preserved the spatial variability of the measured K fields. Moreover, the SAMSE increases as the spatial variability of the K field increases. The OK realization yields small local simulation errors in the measured K field of moderate magnitude, whereas the SGS realizations have small local simulation errors in the measured K fields, with high and low values. The OK realization of K can be applied to perform a deterministic inverse calibration. The mean SGS method is suggested for constructing a K field when the application focuses on extreme values of estimated parameters and small calibration errors, such as in a simulation of contaminant transport in heterogeneous aquifers. The individual SGS realization is useful in stochastically assessing the spatial uncertainty of highly heterogeneous aquifers. Copyright © 2004 John Wiley & Sons, Ltd.