z-logo
Premium
Exploring the spatiotemporal variability of the snow water equivalent in a small boreal forest catchment through observation and modelling
Author(s) -
Parajuli Achut,
Nadeau Daniel F.,
Anctil François,
Parent AnnieClaude,
Bouchard Benjamin,
Girard Médéric,
Jutras Sylvain
Publication year - 2020
Publication title -
hydrological processes
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.222
H-Index - 161
eISSN - 1099-1085
pISSN - 0885-6087
DOI - 10.1002/hyp.13756
Subject(s) - environmental science , snow , vegetation (pathology) , precipitation , hydrology (agriculture) , tree canopy , sampling (signal processing) , drainage basin , boreal , leaf area index , surface runoff , canopy , physical geography , geography , meteorology , ecology , geology , cartography , medicine , geotechnical engineering , archaeology , computer science , computer vision , biology , filter (signal processing) , pathology
In snow‐fed catchments, it is crucial to monitor and model the snow water equivalent (SWE), particularly when simulating the melt water runoff. SWE distribution can, however, be highly heterogeneous, particularly in forested environments. Within these locations, scant studies have explored the spatiotemporal variability in SWE in relation with vegetation characteristics, with only few successful attempts. The aim of this paper is to fill this knowledge gap, through a detailed monitoring at nine locations within a 3.49 km 2 forested catchment in southern Québec, Canada (47°N, 71°W). The catchment receives an annual average of 633 mm of solid precipitation and is predominantly covered with balsam fir stands. Extracted from intensive field campaign and high‐resolution LiDAR data, this study explores the effect of fine scale forest features (tree height, tree diameter, canopy density, leaf area index [LAI], tree density and gap fraction) on the spatiotemporal variability in the SWE distribution. A nested stratified random sampling design was adopted to quantify small‐scale variability across the catchment and 1810 manual snow samples were collected throughout the consecutive winters of 2016–17 and 2017–18. This study explored the variability of SWE using coefficients of variation (CV) and relating to the LAI. We also present existing spatiotemporal differences in maximum snow depth across different stands and its relationship with average tree diameter. Furthermore, exploiting key vegetation characteristics, this paper explores different approaches to model SWE, such as multiple linear regression, binary regression tree and neural networks (NN). We were unable to establish any relationship between the CV of SWE and the LAI. However, we observed an increase in maximum snow depth with decreasing tree diameter, suggesting an association between these variables. NN modelling (Nash‐Sutcliffe efficiency [NSE] = 0.71) revealed that, snow depth, snowpack age and forest characteristics (tree diameter and tree density) are key controlling variables on SWE. Using only variables that are deemed to be more readily available (snow depth, tree height, snowpack age and elevation), NN performance falls by only 7% (NSE = 0.66).

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here