Premium
Overview of tritium records from precipitation and surface waters in Germany
Author(s) -
Schmidt Axel,
Frank Gabriele,
Stichler Willibald,
Duester Lars,
Steinkopff Thomas,
Stumpp Christine
Publication year - 2020
Publication title -
hydrological processes
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.222
H-Index - 161
eISSN - 1099-1085
pISSN - 0885-6087
DOI - 10.1002/hyp.13691
Subject(s) - tritium , environmental science , groundwater , precipitation , tracer , surface water , hydrology (agriculture) , meteorology , geology , environmental engineering , geography , nuclear physics , physics , geotechnical engineering
Tritium is one of the most important environmental tracers in isotope hydrology for understanding the dynamics of groundwater and connected surface water and has been used in a wide range of applications at different scales. A key requirement for using tritium as a tracer is the knowledge of its spatial and temporal distribution in different water types. As a fundamental input, quantity long‐term time series of tritium in precipitation are of particular importance. In this paper, the authors present an overview of tritium data sets of the Federal Institute of Hydrology (BfG), the Helmholtz Zentrum München (HMGU) and the German Weather Service (DWD). Since the 1970s, all three institutions have monitored the tritium concentration at 53 surface water and 37 precipitation stations on a monthly basis. The primary purpose of the data set was to provide baseline information for different water types all over Germany as an integral part of the German radiation protection monitoring system. Additionally, as geochemically inert tracer, tritium provides a unique tool to different user groups in a wide range of research questions and applications.