z-logo
Premium
Estimating dominant runoff modes across the conterminous United States
Author(s) -
Buchanan Brian,
Auerbach Daniel A.,
Knighton James,
Evensen Darrick,
Fuka Daniel R.,
Easton Zachary,
Wieczorek Michael,
Archibald Josephine A.,
McWilliams Brandon,
Walter Todd
Publication year - 2018
Publication title -
hydrological processes
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.222
H-Index - 161
eISSN - 1099-1085
pISSN - 0885-6087
DOI - 10.1002/hyp.13296
Subject(s) - surface runoff , environmental science , hydrology (agriculture) , runoff curve number , hydraulic conductivity , geological survey , soil water , infiltration (hvac) , storm , geology , soil science , geography , ecology , meteorology , paleontology , geotechnical engineering , biology
Effective natural resource planning depends on understanding the prevalence of runoff generating processes. Within a specific area of interest, this demands reproducible, straightforward information that can complement available local data and can orient and guide stakeholders with diverse training and backgrounds. To address this demand within the contiguous United States (CONUS), we characterized and mapped the predominance of two primary runoff generating processes: infiltration‐excess and saturation‐excess runoff (IE vs. SE, respectively). Specifically, we constructed a gap‐filled grid of surficial saturated hydraulic conductivity using the Soil Survey Geographic and State Soil Geographic soils databases. We then compared surficial saturated hydraulic conductivity values with 1‐hr rainfall‐frequency estimates across a range of return intervals derived from CONUS‐scale random forest models. This assessment of the prevalence of IE versus SE runoff also incorporated a simple uncertainty analysis, as well as a case study of how the approach could be used to evaluate future alterations in runoff processes resulting from climate change. We found a low likelihood of IE runoff on undisturbed soils over much of CONUS for 1‐hr storms with return intervals <5 years. Conversely, IE runoff is most likely in the Central United States (i.e., Texas, Louisiana, Kansas, Missouri, Iowa, Nebraska, and Western South Dakota), and the relative predominance of runoff types is highly sensitive to the accuracy of the estimated soil properties. Leveraging publicly available data sets and reproducible workflows, our approach offers greater understanding of predominant runoff generating processes over a continental extent and expands the technical resources available to environmental planners, regulators, and modellers.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here