Premium
Systematic variation in evapotranspiration trends and drivers across the Northeastern United States
Author(s) -
Vadeboncoeur Matthew A.,
Green Mark B.,
Asbjornsen Heidi,
Campbell John L.,
Adams Mary Beth,
Boyer Elizabeth W.,
Burns Douglas A.,
Fernandez Ivan J.,
Mitchell Myron J.,
Shanley James B.
Publication year - 2018
Publication title -
hydrological processes
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.222
H-Index - 161
eISSN - 1099-1085
pISSN - 0885-6087
DOI - 10.1002/hyp.13278
Subject(s) - evapotranspiration , precipitation , environmental science , climate change , water balance , drainage basin , physical geography , structural basin , climatology , hydrology (agriculture) , geography , geology , ecology , oceanography , geotechnical engineering , cartography , meteorology , biology , paleontology
Abstract The direction and magnitude of responses of evapotranspiration (ET) to climate change are important to understand, as ET represents a major water and energy flux from terrestrial ecosystems, with consequences that feed back to the climate system. We inferred multidecadal trends in water balance in 11 river basins (1940–2012) and eight smaller watersheds (with records ranging from 18 to 61 years in length) in the Northeastern United States. Trends in river basin actual ET (AET) varied across the region, with an apparent latitudinal pattern: AET increased in the cooler northern part of the region (Maine) but decreased in some warmer regions to the southwest (Pennsylvania–Ohio). Of the four small watersheds with records longer than 45 years, two fit this geographic pattern in AET trends. The differential effects of the warming climate on AET across the region may indicate different mechanisms of change in more‐ vs. less‐energy‐limited watersheds, even though annual precipitation greatly exceeds potential ET across the entire region. Correlations between AET and time series of temperature and precipitation also indicate differences in limiting factors for AET across the Northeastern U.S. climate gradient. At many sites across the climate gradient, water‐year AET correlated with summer precipitation, implying that water limitation is at least transiently important in some years, whereas correlations with temperature indices were more prominent in northern than southern sites within the region.