z-logo
Premium
Evaluation of snow water equivalent datasets over the Saint‐Maurice river basin region of southern Québec
Author(s) -
Brown Ross,
Tapsoba Dominique,
Derksen Chris
Publication year - 2018
Publication title -
hydrological processes
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.222
H-Index - 161
eISSN - 1099-1085
pISSN - 0885-6087
DOI - 10.1002/hyp.13221
Subject(s) - snow , environmental science , precipitation , climatology , kriging , drainage basin , climate model , range (aeronautics) , multivariate interpolation , meteorology , climate change , hydrology (agriculture) , geology , geography , statistics , oceanography , mathematics , cartography , geotechnical engineering , bilinear interpolation , materials science , composite material
A 10‐km gridded snow water equivalent (SWE) dataset is developed over the Saint‐Maurice River basin region in southern Québec from kriging of observed snow survey data for evaluation of SWE products. The gridded SWE dataset covers 1980–2014 and is based on manual gravimetric snow surveys carried out on February 1, March 1, March 15, April 1, and April 15 of each snow season, which captures the annual maximum SWE (SWEM) with a mean interpolation error of ±19%. The dataset is used to evaluate SWEM from a range of sources including satellite retrievals, reanalyses, Canadian regional climate models, and the Canadian Meteorological Centre operational snow depth analysis. We also evaluate a number of solid precipitation datasets to determine their contribution to systematic errors in estimated SWEM. None of the evaluated datasets is able to provide estimates of SWEM that are within operational requirements of ±15% error, and insufficient solid precipitation is determined to be one of the main reasons. The Climate System Forecast Reanalysis is the only dataset where snowfall is sufficiently large to generate SWEM values comparable to observations. Inconsistencies in precipitation are also found to have a strong impact on year‐to‐year variability in SWEM dataset performance and spread. Version 3.6.1 of the Canadian Land Surface Scheme land surface scheme driven with ERA‐Interim output downscaled by Version 5.0.1 of the Canadian Regional Climate Model was the best physically based model at explaining the observed spatial and temporal variability in SWEM (root‐mean‐square error [RMSE] = 33%) and has potential for lower error with adjusted precipitation. Operational snow products relying on the real‐time snow depth observing network performed poorly due to a lack of real‐time data and the strong local scale variability of point snow depth observations. The results underscore the need for more effort to be invested in improving solid precipitation estimates for use in snow hydrology applications.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here