Premium
Models for recession flows in the upper Blue Nile River
Author(s) -
Mishra A.,
Hata T.,
Abdelhadi A. W.
Publication year - 2004
Publication title -
hydrological processes
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.222
H-Index - 161
eISSN - 1099-1085
pISSN - 0885-6087
DOI - 10.1002/hyp.1322
Subject(s) - recession , mathematics , nonlinear system , hydrology (agriculture) , geology , econometrics , geotechnical engineering , physics , economics , keynesian economics , quantum mechanics
Abstract Stream‐flow recessions are commonly characterized by the exponential equation or in the alternative power form equation of a single linear reservoir. The most common measure of recession is the recession constant K , which relates to the power function form of the recession equation for a linear reservoir. However, in reality it can be seen that the groundwater dynamics of even the simplest of aquifers may behave in a non‐linear fashion. In this study three different storage–outflow algorithms; single linear, non‐linear and multiple linear reservoir were considered to model the stream‐flow recession of the upper Blue Nile. The recession parameters for the linear and non‐linear models were derived by the use of least‐squares regression procedures. Whereas, for the multiple linear reservoir model, a second‐order autoregressive AR (2) model was applied first in order to determine the parameters by the least‐squares method. The modelling of the upper Blue Nile recession flow performed shortly after the wet season, when interflow and bank storage may be contributing considerably to the river flow, showed that the non‐linear reservoir model simulates well with the observed counterparts. The variation related to preceding flow on a recession parameter of the non‐linear reservoir remains significant, which was obtained by stratification of the recession curves. Although a similar stratification did not show any systematic variation on the recession parameters for the linear and multiple linear reservoir models. Copyright © 2004 John Wiley & Sons, Ltd.