z-logo
Premium
Groundwater recharge amidst focused stormwater infiltration
Author(s) -
Bhaskar Aditi S.,
Hogan Dianna M.,
Nimmo John R.,
Perkins Kimberlie S.
Publication year - 2018
Publication title -
hydrological processes
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.222
H-Index - 161
eISSN - 1099-1085
pISSN - 0885-6087
DOI - 10.1002/hyp.13137
Subject(s) - groundwater recharge , stormwater , hydrology (agriculture) , environmental science , infiltration (hvac) , water table , evapotranspiration , groundwater , surface runoff , low impact development , bioretention , geology , aquifer , geography , meteorology , stormwater management , ecology , geotechnical engineering , biology
Distributed, infiltration‐based approaches to stormwater management are being implemented to mitigate effects of urban development on water resources. One of the goals of this type of storm water management, sometimes called low impact development or green infrastructure, is to maintain groundwater recharge and stream base flow at predevelopment levels. However, the connection between infiltration‐based stormwater management and groundwater recharge is not straightforward. Water infiltrated through stormwater facilities may be stored in soil moisture, taken up by evapotranspiration or contribute to recharge and eventually base flow. This study focused on a 1.1 km 2 suburban, low impact development watershed in Clarksburg, Maryland, USA, that was urbanized and contained 73 infiltration‐based stormwater facilities. Continuous water table measurements were used to quantify the movement of infiltrated stormwater. Time series analyses were performed on hydrographs of 7 wells, and the episodic master recession method was used. Persistence in water levels, as measured by autocorrelation function, was found to be positively related to depth to water. Storm properties (precipitation rate and duration) and well location (proximity to the nearest stream) were significant in driving episodic recharge to precipitation ratios. The well that had the highest recharge to precipitation ratios and water table rises of up to 1.5 m in response to storm events was located furthest from the stream and down gradient of stormwater infiltration locations. This work may be considered in evaluating the effects of planned watershed‐scale infiltration‐based stormwater management on groundwater flow systems.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here