Premium
The hydrochemistry of Lake Vostok and the potential for life in Antarctic subglacial lakes
Author(s) -
Siegert Martin J.,
Tranter Martyn,
EllisEvans J. Cynan,
Priscu John C.,
Berry Lyons W.
Publication year - 2003
Publication title -
hydrological processes
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.222
H-Index - 161
eISSN - 1099-1085
pISSN - 0885-6087
DOI - 10.1002/hyp.1166
Subject(s) - meltwater , shelf ice , geology , ice sheet , glacier , antarctic ice sheet , cryosphere , ice stream , oceanography , melt pond , sea ice , ice divide , geomorphology , hydrology (agriculture) , physical geography , geography , geotechnical engineering
Our understanding of Lake Vostok, the huge subglacial lake beneath the East Antarctic Ice Sheet, has improved recently through the identification of key physical and chemical interactions between the ice sheet and the lake. The north of the lake, where the overlying ice sheet is thickest, is characterized by subglacial melting, whereas freezing of lake water occurs in the south, resulting in ∼210 m of ice accretion to the underside of the ice sheet. The accreted ice contains lower concentrations of the impurities normally found in glacier ice, suggesting a net transfer of material from meltwater into the lake. The small numbers of microbes found so far within the accreted ice have DNA profiles similar to those of contemporary surface microbes. Microbiologists expect, however, that Lake Vostok, and other subglacial lakes, will harbour unique species, particularly within the deeper waters and associated sediments. The extreme environments of subglacial lakes are characterized by high pressures, low temperatures, permanent darkness, limited nutrient availability, and oxygen concentrations that are derived from the ice that provides the meltwater. Copyright © 2002 John Wiley & Sons, Ltd.