z-logo
Premium
Hydrological modelling using proxies for gauged precipitation and temperature
Author(s) -
Chen Jie,
Brissette François P.
Publication year - 2017
Publication title -
hydrological processes
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.222
H-Index - 161
eISSN - 1099-1085
pISSN - 0885-6087
DOI - 10.1002/hyp.11304
Subject(s) - streamflow , precipitation , environmental science , climatology , missing data , hydrological modelling , climate model , climate change , spatial ecology , water resources , calibration , meteorology , drainage basin , computer science , geology , geography , statistics , cartography , ecology , oceanography , mathematics , machine learning , biology
Abstract Precipitation and temperature time series suffer from many problems, such as short time, inadequate spatial coverage, missing data, and biases from various causes, which are particularly critical in remote areas such as Northern Canada. The development of alternative datasets for using as proxies for inadequate/missing weather data represents a key research area. In this paper, the performance of 6 alternative datasets is evaluated for hydrological modelling over 12 watersheds located across Canada and the contiguous United States. The datasets can be classified into 3 distinct categories: (a) interpolated gridded data, (b) reanalysis data, and (c) climate model outputs. Hydrological simulations were carried out using a lumped conceptual hydrological model calibrated using standard weather data and compared against results using a calibration specific to each alternative dataset. Prior to the hydrological simulations, the alternative datasets were all evaluated with respect to their ability to reproduce gridded daily precipitation and temperature characteristics over North America. The results show that both the reanalysis data and climate model data adequately represent the spatial pattern of daily precipitation and temperature over North America. The North American Regional Reanalysis (NARR) dataset consistently shows the best performance. With respect to hydrological modelling, the observed discharges are accurately represented by both the gridded and NARR datasets, and more so for the NARR data. The National Centers for Environmental Prediction dataset consistently performs worst as it is unable to even capture the seasonal pattern of observed streamflow for 3 out of the 12 watersheds. These results indicate that the NARR dataset could be used as a proxy for gauged precipitation and temperature for hydrological modelling over watersheds where observational datasets are deficient. The results also illustrate the ability of climate model data to be used for performing hydrological modelling when driven by reanalysis data at their boundaries, and especially so for high‐resolution models.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here