Premium
Bidirectional stream–groundwater flow in response to ephemeral and intermittent streamflow and groundwater seasonality
Author(s) -
Zimmer Margaret A.,
McGlynn Brian L.
Publication year - 2017
Publication title -
hydrological processes
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.222
H-Index - 161
eISSN - 1099-1085
pISSN - 0885-6087
DOI - 10.1002/hyp.11301
Subject(s) - streamflow , groundwater , groundwater recharge , hydrology (agriculture) , streams , water table , groundwater flow , environmental science , ephemeral key , evapotranspiration , precipitation , subsurface flow , groundwater discharge , hydraulic head , geology , aquifer , drainage basin , geography , ecology , meteorology , computer network , cartography , geotechnical engineering , computer science , biology
It is often assumed that the net groundwater flow direction is towards the channel in headwater streams in humid climates, with magnitudes dependent on flow state. However, studies that characterize stream–groundwater interactions in ephemeral and intermittent streams in humid landscapes remain sparse. Here, we examined seasonally driven stream–groundwater interactions in response to temporary streamflow on the basis of field observations of streamflow and groundwater on an adjacent hillslope. The direction of hydraulic head gradients between the stream and groundwater shifted seasonally. The stream gained water (head gradients were towards the stream) when storage state was high. During this period, streamflow was persistent. The stream lost water to the groundwater system (head gradients were away from the stream) when storage state was low. During this period, streamflow only occurred in response to precipitation events, and head gradients remained predominantly away from the stream during events. This suggested that mechanisms other than deep groundwater contributions produced run‐off when storage was low, such as surface and perched subsurface flowpaths above the water table. Analysis of the annual water balance for the study period showed that the residual between precipitation inputs and streamflow and evapotranspiration outputs, which were attributed to the loss of water to the deeper, regional groundwater system, was similar in magnitude to streamflow. This, coupled with results that showed bidirectionality in stream–groundwater head gradients, indicated that headwaters composed of temporary (e.g., ephemeral and intermittent) streams can be important focal areas for regional groundwater recharge, and both contribute to and receive water, solutes, and materials from the groundwater system.