Premium
Temporally stable patterns but seasonal dependent controls of soil water content: Evidence from wavelet analyses
Author(s) -
Hu Wei,
Si Bing Cheng,
Biswas Asim,
Chau Henry Wai
Publication year - 2017
Publication title -
hydrological processes
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.222
H-Index - 161
eISSN - 1099-1085
pISSN - 0885-6087
DOI - 10.1002/hyp.11289
Subject(s) - environmental science , soil water , spatial ecology , multivariate statistics , soil carbon , bivariate analysis , spatial distribution , water content , spring (device) , wavelet , physical geography , temporal scales , scale (ratio) , soil science , hydrology (agriculture) , geology , geography , cartography , ecology , statistics , remote sensing , mathematics , biology , mechanical engineering , geotechnical engineering , artificial intelligence , computer science , engineering
Scale‐ and location‐dependent relationships between soil water content (SWC) and individual environmental factors have been widely explored. SWC is controlled by multiple factors concurrently; however, the multivariate relationship is rarely explored at different scales and locations. Multivariate controls of SWC at different scales and locations in two seasons within a hummocky landscape of North America were identified using bivariate wavelet coherency and multiple wavelet coherence. Results showed that depth to CaCO 3 layer, which was correlated with elevation over all locations at scales of 36–144 m and cos(aspect), provided the best individual factor for explaining SWC variations in spring (May 2) and summer (August 23), respectively. Although spatial patterns of SWC were temporally stable, different topographic indices affected spatial distribution of SWC in different seasons (elevation in spring and aspect in summer) due to different dominating hydrological processes. These varying hydrological processes also resulted in the distinct role of soil organic carbon (SOC) content in different seasons: a positive correlation in spring and a negative correlation in summer. Multiple wavelet coherence identified a combination of depth to CaCO 3 layer and SOC in spring and a combination of cos(aspect) and SOC in summer that controlled SWC at different scales and locations, respectively. This indicated a combined effect of soil and topographic properties on SWC distribution and a clear need for these two factors in developing scale‐dependent prediction of SWC in the hummocky landscape of North America.