Premium
Development of a rain‐on‐snow detection algorithm using passive microwave radiometry
Author(s) -
Dolant Caroline,
Langlois Alexandre,
Montpetit Benoit,
Brucker Ludovic,
Roy Alexandre,
Royer Alain
Publication year - 2016
Publication title -
hydrological processes
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.222
H-Index - 161
eISSN - 1099-1085
pISSN - 0885-6087
DOI - 10.1002/hyp.10828
Subject(s) - snow , environmental science , brightness temperature , radiometer , precipitation , radiometry , climate change , arctic , microwave , climatology , meteorology , atmospheric sciences , remote sensing , geology , geography , oceanography , computer science , telecommunications
Currently observed climate warming in the Arctic has numerous consequences. Of particular relevance, the precipitation regime is modified where mixed and liquid precipitation can occur during the winter season leading to rain‐on‐snow (ROS) events. This phenomenon is responsible for ice crust formation, which has a significant impact on ecosystems (such as biological, hydrological, ecological and physical processes). The spatially and temporally sporadic nature of ROS events makes the phenomenon difficult to monitor using meteorological observations. This paper focuses on the detection of ROS events using passive microwave (PMW) data from a modified brightness temperature (T B ) gradient approach at 19 and 37 GHz. The approach presented here was developed empirically for observed ROS events with coincident ground‐based PMW measurements in Sherbrooke, Quebec, Canada. It was then tested in Nunavik, Quebec, with the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR‐E). We obtained a detection accuracy of 57, 71 and 89% for ROS detection for three AMSR‐E grid cells with a maximum error of 7% when considering all omissions and commissions with regard to the total number of AMSR‐E passes throughout the winter period. Copyright © 2016 John Wiley & Sons, Ltd.