Premium
A coupled hydrology–biogeochemistry model to simulate dissolved organic carbon exports from a permafrost‐influenced catchment
Author(s) -
Lessels Jason S.,
Tetzlaff Doerthe,
Carey Sean K,
Smith Pete,
Soulsby Chris
Publication year - 2015
Publication title -
hydrological processes
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.222
H-Index - 161
eISSN - 1099-1085
pISSN - 0885-6087
DOI - 10.1002/hyp.10566
Subject(s) - dissolved organic carbon , permafrost , biogeochemistry , hydrology (agriculture) , drainage basin , snowmelt , environmental science , catchment hydrology , hydrological modelling , streams , structural basin , geology , oceanography , climatology , snow , geomorphology , geography , computer science , computer network , geotechnical engineering , cartography
We outline the development of a simple, coupled hydrology–biogeochemistry model for simulating stream discharge and dissolved organic carbon (DOC) dynamics in data sparse, permafrost‐influenced catchments with large stores of soil organic carbon. The model incorporates the influence of active layer dynamics and slope aspect on hydrological flowpaths and resulting DOC mobilization. Calibration and evaluation of the model was undertaken using observations from Granger Basin within the Wolf Creek research basin, Yukon, northern Canada. Results show that the model was able to capture the dominant hydrological response and DOC dynamics of the catchment reasonably well. Simulated DOC was highly correlated with observed DOC ( r 2 = 0.65) for the study period. During the snowmelt period, the model adequately captured the observed dynamics, with simulations generally reflecting the timing and magnitude of the observed DOC and stream discharge. The model was less successful over the later summer period although this partly reflected a lack of DOC observations for calibration. The developed model offers a valuable framework for investigating the interactions between hydrological and DOC processes in these highly dynamic systems, where data acquisition is often very difficult. © 2015 The Authors Hydrological Processes Published by John Wiley & Sons, Ltd.