z-logo
Premium
From Phenotype to Genotype: A New Twist on Identifying Genes Responsible for Inherited Hearing Loss
Author(s) -
Mooney Sean
Publication year - 2013
Publication title -
human mutation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.981
H-Index - 162
eISSN - 1098-1004
pISSN - 1059-7794
DOI - 10.1002/humu.22182
Subject(s) - audiogram , penetrance , hearing loss , genetics , mendelian inheritance , biology , genotype , phenotype , genotype phenotype distinction , polygene , hum , expressivity , omim : online mendelian inheritance in man , audiology , gene , medicine , quantitative trait locus , art , performance art , art history
Multiple genotyping techniques were developed on the basis of real-time PCR. In this article, we present a genotyping technique extending the induced Förster resonance energy transfer (iFRET) mechanism in conjunction with simultaneous mutation scanning. Rapid, asymmetric PCR was performed with SYTO9, polymerase lacking 5 → 3 exonuclease activity, two primers, and a probe labeled with 6-Carboxy-X-rhodamine. Six primers and probe sets were designed to detect germline mutations in BRCA1, a singular polymorphism in CCND1 and somatic mutations in KRAS and BRAF genes. The validation set consisted of 140 archival DNA samples from patients with previously confirmed BRCA1 mutation and 42 archival formalin-fixed and paraffin-embedded tissues from patients with colorectal cancer or malignant melanoma. BRCA1 and CCND1 genotyping by iFRET probe showed 100% agreement with Sanger sequencing and other validated methods. A combination of iFRET and high-resolution melting analysis (HRMA) detected a spectrum of six different mutations in the KRAS gene and three different mutations in the BRAF gene. Due to anallele enrichment effect, the sensitivity of mutation detection of iFRET–HRMA genotyping and sequencing of iFRET–HRMA PCR products was significant, increasing from 1.5% to 6.2%, respectively. The technique presented in this article is a useful and cost-effective method for the detection of both germline and somatic mutations.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here