z-logo
Premium
On the sequence‐directed nature of human gene mutation: The role of genomic architecture and the local DNA sequence environment in mediating gene mutations underlying human inherited disease
Author(s) -
Cooper David N.,
Bacolla Albino,
Férec Claude,
Vasquez Karen M.,
KehrerSawatzki Hildegard,
Chen JianMin
Publication year - 2011
Publication title -
human mutation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.981
H-Index - 162
eISSN - 1098-1004
pISSN - 1059-7794
DOI - 10.1002/humu.21557
Subject(s) - biology , genetics , mutation , gene , human genome , context (archaeology) , genomic dna , dna , sequence (biology) , dna sequencing , epigenetics , genome , computational biology , paleontology
Different types of human gene mutation may vary in size, from structural variants (SVs) to single base‐pair substitutions, but what they all have in common is that their nature, size and location are often determined either by specific characteristics of the local DNA sequence environment or by higher order features of the genomic architecture. The human genome is now recognized to contain “pervasive architectural flaws” in that certain DNA sequences are inherently mutation prone by virtue of their base composition, sequence repetitivity and/or epigenetic modification. Here, we explore how the nature, location and frequency of different types of mutation causing inherited disease are shaped in large part, and often in remarkably predictable ways, by the local DNA sequence environment. The mutability of a given gene or genomic region may also be influenced indirectly by a variety of noncanonical (non‐B) secondary structures whose formation is facilitated by the underlying DNA sequence. Since these non‐B DNA structures can interfere with subsequent DNA replication and repair and may serve to increase mutation frequencies in generalized fashion (i.e., both in the context of subtle mutations and SVs), they have the potential to serve as a unifying concept in studies of mutational mechanisms underlying human inherited disease. Hum Mutat 32:1075–1099, 2011. ©2011 Wiley‐Liss, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here