Premium
Transcriptional expression of cis ‐acting and trans ‐acting splicing mutations cause autosomal dominant retinitis pigmentosa
Author(s) -
Gamundi María José,
Hernan Imma,
Muntanyola Marta,
Maseras Miquel,
LópezRomero Pedro,
Álvarez Rebeca,
Dopazo Ana,
Borrego Salud,
Carballo Miguel
Publication year - 2008
Publication title -
human mutation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.981
H-Index - 162
eISSN - 1098-1004
pISSN - 1059-7794
DOI - 10.1002/humu.20747
Subject(s) - biology , genetics , rna splicing , retinitis pigmentosa , mutation , intron , splice site mutation , exon , gene , point mutation , splice , microbiology and biotechnology , rna
Two types of mutations may lead to deficient pre‐mRNA splicing: cis ‐acting mutations that inactivate a constitutive or alternative splice site within the pre‐mRNA, and trans ‐acting mutations that affect the function of a basal factor of the splicing machinery. Autosomal dominant retinitis pigmentosa (adRP) is caused by mutations in at least 12 genes, with mutations in rhodopsin being the most prevalent. Two cis ‐acting mutations, g.3811A>G and g.5167G>T at the splice site in the rhodopsin gene ( RHO ; GenBank U49742.1) are linked to adRP in a Spanish population; while a cis ‐acting mutation, g.4335G>T, has been linked to recessive RP (arRP). Transcriptional expression analysis showed that the cis ‐acting splicing mutations linked to adRP promoted alternative splice sites, while the arRP linked mutation results in exclusion of exon 4. Trans ‐acting splicing mutations associated with adRP have also been found, and mutations in the pre‐mRNA splicing factors PRPF3, PRPF8, PRPF31 , and RP9 are associated with adRP in several populations. This report describes a new mutation in PRPF3 in a Spanish adRP family. We also investigated the transcriptional patterns in Epstein‐Barr virus (EBV)‐transformed lymphoblastoid cells from patients carrying a mutation in PRPF8 . Despite the role of PRPF8 in the minor U12 splicing processes, microarray analysis revealed that mutations in PRPF8 not only did not result in significant differences in splicing efficiency of rhodopsin, but no apparent changes in expression of U12‐type intron genes and splicing processes was observed. Microarray analysis revealed a panel of differentially expressed genes mapped to the RP loci, and future work will determine their role in RP. Hum Mutat 29(6), 869–878, 2008. © 2008 Wiley‐Liss, Inc.