Premium
Magnetohydrodynamic MgO/CuO‐water hybrid nanofluid flow driven by two distinct geometries
Author(s) -
Sulochana C.,
Aparna S. R.,
Sandeep N.
Publication year - 2020
Publication title -
heat transfer
Language(s) - English
Resource type - Journals
eISSN - 2688-4542
pISSN - 2688-4534
DOI - 10.1002/htj.21794
Subject(s) - nanofluid , magnetohydrodynamic drive , wedge (geometry) , materials science , thermodynamics , mechanics , heat transfer , coolant , heat exchanger , magnetohydrodynamics , physics , plasma , optics , quantum mechanics
Research regarding the heat transit mechanism of magnetohydrodynamic hybrid nanoliquid flow over contrasting flow profiles is predominantly employed in transpiration, coolants, fiber coatings, heat exchangers, and so on. Owing to this, we intend to dissect the heat transport behavior of MHD hybrid nanofluid flow past a cone as well as a wedge. For the analysis, we take nonlinear radiation and viscous dissipation into consideration with 30% of ethylene glycol and water (or EGW) as base fluid with suspended copper oxide (CuO) and magnesium oxide (MgO) nanoparticles. The Runge‐Kutta method with the shooting technique is utilized to figure out the deduced nonlinear gotverning equations. The influence of the concerned different admissible parameters on similar distributions (cone and wedge) are graphically illustrated and interpreted accordingly via computed numerical values. It is worth noting that the heat transport rate is greater past the cone rather than the wedge. The presence of CuO and MgO hybrid nanoparticles increases the heat transfer rate of the EGW base fluid.