Premium
Spectral relaxation method analysis of Casson nanofluid flow over stretching cylinder with variable thermal conductivity and Cattaneo–Christov heat flux model
Author(s) -
Tulu Ayele,
Ibrahim Wubshet
Publication year - 2020
Publication title -
heat transfer
Language(s) - English
Resource type - Journals
eISSN - 2688-4542
pISSN - 2688-4534
DOI - 10.1002/htj.21781
Subject(s) - heat flux , heat transfer , nanofluid , mechanics , thermal conductivity , thermal conduction , churchill–bernstein equation , heat transfer coefficient , thermodynamics , boundary layer , thermophoresis , materials science , physics , nusselt number , turbulence , reynolds number
This article deals with non‐Newtonian Casson nanofluid flow and heat transfer over stretching cylinder in a porous medium. The mode of heat transfer is presented considering temperature‐dependent thermal conductivity by integrating the Cattaneo–Christov heat flux and mass flux models. Boundary layer theory is applied to develop the governing partial differential equations from the physical problem. Employing proper similarity transformation, the governing boundary layer equations are transformed into dimensionless system of nonlinear ordinary differential equations. Then, the resulting problem is numerically solved by means of spectral relaxation method. The convergence analysis of the proposed numerical scheme is presented via a table, which confirms almost the 10th order of approximation is enough for the convergence of the skin friction coefficient, local heat transfer, and mass transfer rates. The effects of various embedded parameters on velocity, temperature, and concentration profiles as well as skin friction coefficient, surface heat and mass transfer rates are examined through graphs and tables. The findings reveal that the growth of permeability and velocity slip parameters appears to decelerate the velocity distributions of fluid. Thermal boundary layer thickness tends to develop with greater values of permeability and Brownian motion parameters. Also, the local heat transfer rate is less with Fourier's law of heat conduction than Cattaneo–Christov heat flux model. Furthermore, the validity and accuracy of the present result is checked with the available literature, and very sound agreement has been obtained.