Premium
Enrichment of heat transfer in a latent heat storage unit using longitudinal fins
Author(s) -
Mehta Digant S.,
Vaghela Bhavesh,
Rathod Manish K.,
Banerjee Jyotirmay
Publication year - 2020
Publication title -
heat transfer
Language(s) - English
Resource type - Journals
eISSN - 2688-4542
pISSN - 2688-4534
DOI - 10.1002/htj.21739
Subject(s) - fin , heat transfer , materials science , latent heat , phase change material , mechanics , thermal energy storage , thermal conductivity , thermal , heat transfer enhancement , thermodynamics , composite material , heat transfer coefficient , physics
The charging and discharging rates of a phase change material (PCM) in a horizontal latent heat storage unit (LHSU) is largely influenced by the lower thermal conductivity of the PCM. In the present research, four different configurations of longitudinal fins are proposed to augment the heat transfer in horizontal shell and tube type LHSUs. Numerical investigations are reported to establish the thermal performance augmentation with rectangular, triangular, and Y‐shaped (bifurcated) fins. From the results, it has been inferred that all fin configurations provide a faster charging and discharging rate. In the present set of geometric dimensions of LHSU considered, a reduction in charging time of 68.71% is evaluated for case III (three rectangular fins with one fin positioned in the area of the heat transfer fluid [HTF] surface) and case V (two bifurcated fins with one fin positioned in the area of the HTF surface). Moreover, overall cycle (charging + discharging) time is reduced by 58.3% for case III. Employment of fins results in a faster rate of absorption and extraction of energy from the PCM.