z-logo
Premium
Chlorine Dioxide as an Electron‐Transfer Oxidant of Olefins. Preliminary Communication
Author(s) -
RavAcha Chaim,
Choshen Goldstein Ehud,
Sarel Shalom
Publication year - 1986
Publication title -
helvetica chimica acta
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.74
H-Index - 82
eISSN - 1522-2675
pISSN - 0018-019X
DOI - 10.1002/hlca.19860690729
Subject(s) - chemistry , cyclohexene , indene , electron transfer , styrene , photochemistry , acenaphthylene , protonation , reactivity (psychology) , yield (engineering) , kinetics , medicinal chemistry , chlorine , alkene , organic chemistry , ion , naphthalene , catalysis , copolymer , medicine , polymer , alternative medicine , materials science , physics , pathology , quantum mechanics , metallurgy
The kinetics and product studies of oxidation of eight olefins 1 ‐ 8 by ClO 2 in H 2 O in the pH range 3‐7 are described. The reaction is faster as the pH decreases. At pH < 4, ClO 2 reacts equimolarly with olefins to yield isomeric mixtures of chlorohydrines and 1,2‐dioxygenated products, following the equation:The order of reactivity is: ( E )‐stilbene > indene > β‐methylstyrene > acenaphthylene > α‐methylstyrene > styrene > cyclohexene > allylbenzene. A multi‐stage radical‐cation mechanism is proposed, in which an initial reversible protonation:\documentclass{article}\pagestyle{empty}\begin{document}$$ {\rm ClO}_{{\rm 2}} + {\rm H}^{\rm +} \mathbin{\lower.3ex\hbox{$\buildrel\textstyle\rightarrow\over {\smash{\leftarrow}\vphantom{_{\vbox to.5ex{\vss}}}}$}} \left[{{\rm HClO}_{\rm 2}} \right]^ + $$\end{document}is followed by an electron‐transfer stage (rate‐determining):The cation‐radical thus produced, adds rapidly an additional ClO 2 to form dioxygenated products. The chlorohydrines most likely arise from HClO additions to the olefinic double bonds, which, in turn, generate from dismutation of 2 HClO 2 into HClO + H + + ClO   3 − .

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom