z-logo
Premium
Cuprous complexes and dioxygen, VII . Competition between one‐ and two‐electron reduction of O 2 in the autoxidation of Cu(1‐methyl‐2‐hydroxymethyl‐imidazole) 2 +
Author(s) -
Zuberbühler Andreas D.
Publication year - 1976
Publication title -
helvetica chimica acta
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.74
H-Index - 82
eISSN - 1522-2675
pISSN - 0018-019X
DOI - 10.1002/hlca.19760590506
Subject(s) - chemistry , autoxidation , acetonitrile , imidazole , hydroxymethyl , medicinal chemistry , aqueous solution , stereochemistry , reaction rate constant , oxygen , crystallography , kinetics , organic chemistry , physics , quantum mechanics
The complexation of 1‐methyl‐2‐hydroxymethyl‐imidazole (L) with Cu(I) and Cu(II) has been studied in aqueous acetonitrile (AN). Cu(I) forms three complexes, Cu(AN)L + , CuL 2 + , and Cu(AN)H −1 L, with stability constants log K (Cu(AN) + + L ⇌ Cu(AN)L + ) = 4.60 ± 0.02, logβ 2 = 11.31 ± 0.04, and log K (Cu(AN)H −1 L+H + ⇌ Cu(AN)L + ) = 10.43 ± 0.08 in 0.15 M AN. The main species for Cu(II) are CuL 2+ , CuH −1 L + , CuH −1 L 2 + , and CuH −2 L 2 . The autoxidation of CuL 2 + was followed with an oxygen sensor and spectrophotometrically. Competition between the formation of superoxide in a one‐electron reduction of O 2 and a path leading to H 2 O 2 via binuclear (CuL 2 ) 2 O   2 2+was inferred from the rate law\documentclass{article}\pagestyle{empty}\begin{document}$${{ - {\rm d}\left[{{\rm O}_2 } \right]} \mathord{\left/ {\vphantom {{ - {\rm d}\left[{{\rm O}_2 } \right]} {{\rm dt}}}} \right. \kern-\nulldelimiterspace} {{\rm dt}}} = \left[{{\rm CuL}_2^ + } \right]^2 \left[{{\rm O}_2 } \right]\left({\frac{{k_{\rm a} }}{{1 + k_{\rm b} \left[{{\rm CuL}^ + } \right]}} + \frac{{k_{\rm c} \left[{\rm L} \right] + k_{\rm d} + {{\left({{{k_{\rm f} } \mathord{\left/ {\vphantom {{k_{\rm f} } {\left[{\rm L} \right]}}} \right. \kern-\nulldelimiterspace} {\left[{\rm L} \right]}} + k_{\rm g} + k_{\rm h} \left[{\rm L} \right]} \right)} \mathord{\left/ {\vphantom {{\left({{{k_{\rm f} } \mathord{\left/ {\vphantom {{k_{\rm f} } {\left[{\rm L} \right]}}} \right. \kern-\nulldelimiterspace} {\left[{\rm L} \right]}} + k_{\rm g} + k_{\rm h} \left[{\rm L} \right]} \right)} {\left[{{\rm H}^ + } \right]}}} \right. \kern-\nulldelimiterspace} {\left[{{\rm H}^ + } \right]}}}}{{\left[{{\rm CuL}_2 ^ + } \right] + k_{\rm e} \left[{{\rm Cu}\left({{\rm II}} \right)} \right]_{{\rm tot}} }}} \right)$$\end{document} with k a = (2.31 ± 0.12) · 10 4 M −2 S −1 , k b = (1.0 ± 0.2) · 10 3 M −1 , k c = (2.85 ± 0.07) · 10 2 M −2 S −1 , k d = 3.89 ± 0.14 M −1 S −1 , k e = 0.112 ± 0.004, k f = (2.06 ± 0.24) · 10 −10 M S −1 , k g = (1.35 ± 0.07) · 10 −7 S −1 , and k h = (6.8 ± 1.4) · 10 −7 M −1 S −1 .

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom