z-logo
Premium
Dentate gyrus mediates cognitive function in the Ts65Dn/DnJ mouse model of down syndrome
Author(s) -
Smith Genevieve K.,
Kesner Raymond P.,
Korenberg Julie R.
Publication year - 2014
Publication title -
hippocampus
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.767
H-Index - 155
eISSN - 1098-1063
pISSN - 1050-9631
DOI - 10.1002/hipo.22229
Subject(s) - dentate gyrus , neuroscience , cognition , psychology , function (biology) , hippocampus , biology , microbiology and biotechnology
In the Ts65Dn/DnJ mouse model of Down syndrome (DS), hippocampal deficits of learning and memory are the most robust features supporting this mouse as a valid cognitive model of DS. Although dentate gyrus (DG) dysfunction is suggested by excessive GABAergic inhibition, its role in perturbing DG functions in DS is unknown. We hypothesize that in the Ts65Dn/DnJ mouse, the specific role of the DG is disturbed in its support of contextual and spatial information. Support for this hypothesis comes from rats with DG lesions that show similar deficits. In order to test this hypothesis, we have developed a novel series of spontaneous exploratory tasks that emphasize the importance of recognizing spatial and contextual cues and that involve DG function. The results with this exploratory battery show that Ts65Dn/DnJ mice are impaired in DG‐dependent short‐term recognition tests involving object recognition with contextual cues, in place recognition and in metric distance recognition relative to wild type littermate controls. Further, whereas Ts65Dn/DnJ mice can recognize object novelty in the absence of contextual cues after a 5‐min delay, they cannot do so after a delay of 24 h, suggesting a problem with CA1‐mediated consolidation. The results also show that Ts65Dn/DnJ mice are not impaired in tasks (object recognition and configural object recognition) that are mediated by the perirhinal cortex (PRh). These results implicate the DG as a specific therapeutic target and the PRh as a potential therapeutic strength for future research to ameliorate learning and memory in DS. © 2013 Wiley Periodicals, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here