Premium
Causal evidence for the involvement of the neural cell adhesion molecule, NCAM, in chronic stress‐induced cognitive impairments
Author(s) -
Bisaz Reto,
Schachner Melitta,
Sandi Carmen
Publication year - 2011
Publication title -
hippocampus
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.767
H-Index - 155
eISSN - 1098-1063
pISSN - 1050-9631
DOI - 10.1002/hipo.20723
Subject(s) - neural cell adhesion molecule , neuroscience , cell adhesion molecule , cognition , chronic stress , psychology , cell adhesion , chemistry , cell , biology , microbiology and biotechnology , biochemistry
In rodents, chronic stress induces long‐lasting structural and functional alterations in the hippocampus, as well as learning and memory impairments. The neural cell adhesion molecule (NCAM) was previously hypothesized to be a key molecule in mediating the effects of stress due to its role in neuronal remodeling and since chronic stress diminishes hippocampal NCAM expression in rats. However, since most of the evidence for these effects is correlative or circumstantial, we tested the performance of conditional NCAM‐deficient mice in the water maze task to obtain causal evidence for the role of NCAM. We first validated that exposure to chronic unpredictable stress decreased hippocampal NCAM expression in C57BL/6 wild‐type mice, inducing deficits in reversal learning and mild deficits in spatial learning. Similar deficits in water maze performance were found in conditional NCAM‐deficient mice that could not be attributed to increased anxiety or enhanced corticosterone responses. Importantly, the performance of both the conditional NCAM‐deficient mice and chronically stressed wild‐type mice in the water maze was improved by post‐training injection of the NCAM mimetic peptide, FGLs. Thus, these findings support the functional involvement of NCAM in chronic stress‐induced alterations and highlight this molecule as a potential target to treat stress‐related cognitive disturbances. © 2009 Wiley‐Liss, Inc.