Premium
Common pathway in the medial temporal lobe for storage and recovery of words as revealed by event‐related functional MRI
Author(s) -
Daselaar Sander M.,
Veltman Dick J.,
Witter Menno P.
Publication year - 2003
Publication title -
hippocampus
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.767
H-Index - 155
eISSN - 1098-1063
pISSN - 1050-9631
DOI - 10.1002/hipo.10158
Subject(s) - neuroscience , temporal lobe , psychology , event (particle physics) , cognitive psychology , epilepsy , physics , quantum mechanics
Lesion studies have provided compelling evidence that episodic memory is dependent on the integrity of the medial temporal lobe (MTL). This role of the MTL in episodic memory has been supported by several neuroimaging studies during both episodic encoding and retrieval. After two meta‐analyses of positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) studies, we investigated a possible dissociation within the MTL memory system in relation to encoding and retrieval processes. Based on previous reports that specifically related the function of the MTL in episodic memory to successful encoding and actual recovery of information, we applied event‐related fMRI to compare successful encoding of words (ES) directly with successful recognition of those same words (RS). Our results did not indicate a clear dissociation between encoding and retrieval activations in the MTL. Instead, a region in the left MTL, covering the parahippocampal cortex and hippocampal formation, which was activated during ES almost completely overlapped with the area that was activated during RS. An additional region in the left anterior MTL, including the entorhinal cortex, was found to be activated exclusively during ES. Research has indicated that a large percentage of cells in this region are particularly sensitive to the relative novelty of stimuli. Our results, therefore, suggest that the parahippocampal/hippocampal region is involved in the formation and subsequent reactivation of memory traces, whereas the activity observed in the entorhinal cortex may reflect elementary memory processes related to novelty detection. © 2003 Wiley‐Liss, Inc.