z-logo
Premium
Long‐term synaptic depression in the adult entorhinal cortex in vivo
Author(s) -
Bouras Raby,
Chapman C. Andrew
Publication year - 2003
Publication title -
hippocampus
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.767
H-Index - 155
eISSN - 1098-1063
pISSN - 1050-9631
DOI - 10.1002/hipo.10124
Subject(s) - neuroscience , entorhinal cortex , long term depression , hippocampus , term (time) , depression (economics) , psychology , medicine , nmda receptor , ampa receptor , physics , receptor , quantum mechanics , economics , macroeconomics
The piriform cortex provides a major input to the entorhinal cortex. Mechanisms of long‐term depression (LTD) of synaptic transmission in this pathway may affect olfactory and mnemonic processing. We have investigated stimulation parameters for the induction of homosynaptic LTD and depotentiation in this pathway using evoked synaptic field potential recordings in the awake rat. In this study, 15 min of 1‐Hz stimulation induced a transient (<5 min) depression of evoked responses but did not induce LTD or depotentiation. To determine whether inhibitory and/or facilitatory mechanisms contribute to LTD induction, repetitive delivery of pairs of stimulation pulses was also assessed. Repetitive paired‐pulse stimulation with a 10‐ms interval between pulses, which activates inhibitory mechanisms during the second response, did not reliably induce LTD. However, repetitive paired‐pulse stimulation using a 30‐ms interval, which evokes marked paired‐pulse facilitation, resulted in synaptic depression that lasted ≥1 day, and which was reversible by tetanization. The selective induction of LTD by stimulation that evokes paired‐pulse facilitation suggests that strong synaptic activation is required for LTD induction. The N ‐methyl‐ D ‐aspartate (NMDA) receptor antagonist MK‐801 (0.1 mg/kg) blocked the induction of LTD, indicating that NMDA receptor activation is required for LTD induction in this pathway. These results indicate that LTD in piriform cortex inputs to the entorhinal cortex in the awake rat is effectively induced by strong repetitive synaptic stimulation, and that this form of LTD is dependent on activation of NMDA receptors. © 2003 Wiley‐Liss, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here