z-logo
Premium
Mitochondrial adaptations and dysfunctions in nonalcoholic fatty liver disease
Author(s) -
Begriche Karima,
Massart Julie,
Robin MarieAnne,
Bonnet Fabrice,
Fromenty Bernard
Publication year - 2013
Publication title -
hepatology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.488
H-Index - 361
eISSN - 1527-3350
pISSN - 0270-9139
DOI - 10.1002/hep.26226
Subject(s) - nonalcoholic fatty liver disease , insulin resistance , lipogenesis , endocrinology , medicine , steatosis , oxidative stress , fatty liver , adipose tissue , beta oxidation , biology , insulin , disease , metabolism
The worldwide epidemic of obesity and insulin resistance favors nonalcoholic fatty liver disease (NAFLD). Insulin resistance (IR) in the adipose tissue increases lipolysis and the entry of nonesterified fatty acids (NEFAs) in the liver, whereas IR‐associated hyperinsulinemia promotes hepatic de novo lipogenesis. However, several hormonal and metabolic adaptations are set up in order to restrain hepatic fat accumulation, such as increased mitochondrial fatty acid oxidation (mtFAO). Unfortunately, these adaptations are usually not sufficient to reduce fat accumulation in liver. Furthermore, enhanced mtFAO without concomitant up‐regulation of the mitochondrial respiratory chain (MRC) activity induces reactive oxygen species (ROS) overproduction within different MRC components upstream of cytochrome c oxidase. This event seems to play a significant role in the initiation of oxidative stress and subsequent development of nonalcoholic steatohepatitis (NASH) in some individuals. Experimental investigations also pointed to a progressive reduction of MRC activity during NAFLD, which could impair energy output and aggravate ROS overproduction by the damaged MRC. Hence, developing drugs that further increase mtFAO and restore MRC activity in a coordinated manner could ameliorate steatosis, but also necroinflammation and fibrosis by reducing oxidative stress. In contrast, physicians should be aware that numerous drugs in the current pharmacopoeia are able to induce mitochondrial dysfunction, which could aggravate NAFLD in some patients. (H epatology 2013;58:1497–1507)

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here