z-logo
Premium
Alanine aminotransferase isoenzymes: Molecular cloning and quantitative analysis of tissue expression in rats and serum elevation in liver toxicity
Author(s) -
Yang RongZe,
Park Soohyun,
Reagan William J.,
Goldstein Rick,
Zhong Shao,
Lawton Michael,
Rajamohan Francis,
Qian Kun,
Liu Li,
Gong DaWei
Publication year - 2009
Publication title -
hepatology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.488
H-Index - 361
eISSN - 1527-3350
pISSN - 0270-9139
DOI - 10.1002/hep.22657
Subject(s) - alanine aminotransferase , isozyme , toxicity , liver tissue , liver toxicity , biology , medicine , cloning (programming) , microbiology and biotechnology , endocrinology , biochemistry , enzyme , computer science , programming language
Abstract The elevation of serum alanine aminotransferase (ALT) is regarded as an indicator of liver damage based on the presumption that ALT protein is specifically and abundantly expressed in the liver. However, ALT elevation is also observed in non–liver injury conditions (for example, muscle injury) and in apparently healthy people. Conversely, serum ALT activity is normal in many patients with confirmed liver diseases (for example, cirrhosis and hepatitis C infection). To improve the diagnostic value of the ALT assay and to understand the molecular basis for serum ALT changes in various pathophysiological conditions, we have cloned rat ALT isoenzyme ALT1 and ALT2 complementary DNAs (cDNAs), examined their tissue expressions at the messenger RNA and protein levels, and determined ALT1 and ALT 2 serum levels in response to liver damage in rodents. Quantitative real‐time polymerase chain reaction (qRT‐PCR) analysis shows that ALT1 messenger RNA is widely distributed and mainly expressed in intestine, liver, fat tissues, colon, muscle, and heart, in the order of high to low expression level, whereas ALT2 gene expression is more restricted, mainly in liver, muscle, brain, and white adipose tissue. The tissue distribution pattern of ALT1 and ALT2 proteins largely agrees with their messenger RNA expression. Interestingly, hepatic ALT2 protein is approximately four times higher in male rats than in female rats. In addition, ALT isoenzymes distribute differentially at the subcellular level in that ALT1 is a cytoplasmic protein and ALT2 a mitochondrial protein, supporting bioinformatic prediction of mitochondrial localization of ALT2. Conclusion: Using animal models of hepatoxicity induced by carbon tetrachloride and acetaminophen, we found that both serum ALT1 and ALT2 protein levels were significantly elevated and correlated with ALT activity, providing, for the first time, the molecular basis for the elevated total serum ALT activity. (H EPATOLOGY 2008.)

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here