z-logo
Premium
PGE 1 ‐induced NO reduces apoptosis by D ‐galactosamine through attenuation of NF‐κB and NOS‐2 expression in rat hepatocytes
Author(s) -
Siendones Emilio,
Fouad Dalia,
DíazGuerra María José M.,
de la Mata Manuel,
Boscá Lisardo,
Muntané Jordi
Publication year - 2004
Publication title -
hepatology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.488
H-Index - 361
eISSN - 1527-3350
pISSN - 0270-9139
DOI - 10.1002/hep.20448
Subject(s) - apoptosis , hepatocyte , nf κb , microbiology and biotechnology , iκbα , galactosamine , nfkb1 , transfection , programmed cell death , nitric oxide synthase , chemistry , biology , cell culture , endocrinology , biochemistry , nitric oxide , in vitro , transcription factor , gene , genetics , glucosamine
Prostaglandin E1 (PGE1) reduces cell death in experimental and clinical liver dysfunction. We have previously shown that PGE1 preadministration protects against NO-dependent cell death induced by D-galactosamine (D-GalN) through a rapid increase of nuclear factor kappaB (NF-kappaB) activity, inducible NO synthase (NOS-2) expression, and NO production. The present study investigates whether PGE1-induced NO was able to abolish NF-kappaB activation, NOS-2 expression, and apoptosis elicited by D-GalN. Rat hepatocytes were isolated following the classical method of collagenase perfusion of liver. PGE1 (1 micromol/L) was administered 2 hours before D-GalN (5 mmol/L) in primary culture rat hepatocytes. PGE1 reduced inhibitor kappaBalpha degradation, NF-kappaB activation, NOS-2 expression, and apoptosis induced by D-GalN. The administration of an inhibitor of NOS-2 abolished the inhibitory effect of PGE1 on NF-kappaB activation and NOS-2 expression in D-GalN-treated hepatocytes. Transfection studies using different plasmids corresponding to the NOS-2 promoter region showed that D-GalN and PGE1 regulate NOS-2 expression through NF-kappaB during the initial stage of hepatocyte treatment. PGE1 was able to reduce the promoter activity induced by D-GalN. In addition, a NO donor reduced NOS-2 promoter activity in transfected hepatocytes. In conclusion, administration of PGE1 to hepatocytes produces low levels of NO, which inhibits its own formation during D-GalN-induced cell death through the attenuation of NF-kappaB-dependent NOS-2 expression. Therefore, a dual role for NO in PGE1-treated D-GalN-induced toxicity in hepatocytes is characterized by a rapid NO release that attenuates the late and proapoptotic NOS-2 expression.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom