z-logo
Premium
PGE 1 ‐induced NO reduces apoptosis by D ‐galactosamine through attenuation of NF‐κB and NOS‐2 expression in rat hepatocytes
Author(s) -
Siendones Emilio,
Fouad Dalia,
DíazGuerra María José M.,
de la Mata Manuel,
Boscá Lisardo,
Muntané Jordi
Publication year - 2004
Publication title -
hepatology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.488
H-Index - 361
eISSN - 1527-3350
pISSN - 0270-9139
DOI - 10.1002/hep.20448
Subject(s) - apoptosis , hepatocyte , nf κb , microbiology and biotechnology , iκbα , galactosamine , nfkb1 , transfection , programmed cell death , nitric oxide synthase , chemistry , biology , cell culture , endocrinology , biochemistry , nitric oxide , in vitro , transcription factor , gene , genetics , glucosamine
Prostaglandin E1 (PGE1) reduces cell death in experimental and clinical liver dysfunction. We have previously shown that PGE1 preadministration protects against NO-dependent cell death induced by D-galactosamine (D-GalN) through a rapid increase of nuclear factor kappaB (NF-kappaB) activity, inducible NO synthase (NOS-2) expression, and NO production. The present study investigates whether PGE1-induced NO was able to abolish NF-kappaB activation, NOS-2 expression, and apoptosis elicited by D-GalN. Rat hepatocytes were isolated following the classical method of collagenase perfusion of liver. PGE1 (1 micromol/L) was administered 2 hours before D-GalN (5 mmol/L) in primary culture rat hepatocytes. PGE1 reduced inhibitor kappaBalpha degradation, NF-kappaB activation, NOS-2 expression, and apoptosis induced by D-GalN. The administration of an inhibitor of NOS-2 abolished the inhibitory effect of PGE1 on NF-kappaB activation and NOS-2 expression in D-GalN-treated hepatocytes. Transfection studies using different plasmids corresponding to the NOS-2 promoter region showed that D-GalN and PGE1 regulate NOS-2 expression through NF-kappaB during the initial stage of hepatocyte treatment. PGE1 was able to reduce the promoter activity induced by D-GalN. In addition, a NO donor reduced NOS-2 promoter activity in transfected hepatocytes. In conclusion, administration of PGE1 to hepatocytes produces low levels of NO, which inhibits its own formation during D-GalN-induced cell death through the attenuation of NF-kappaB-dependent NOS-2 expression. Therefore, a dual role for NO in PGE1-treated D-GalN-induced toxicity in hepatocytes is characterized by a rapid NO release that attenuates the late and proapoptotic NOS-2 expression.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here