
Using child‐friendly movie stimuli to study the development of face, place, and object regions from age 3 to 12 years
Author(s) -
Kamps Frederik S.,
Richardson Hilary,
Murty N. Apurva Ratan,
Kanwisher Nancy,
Saxe Rebecca
Publication year - 2022
Publication title -
human brain mapping
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.005
H-Index - 191
eISSN - 1097-0193
pISSN - 1065-9471
DOI - 10.1002/hbm.25815
Subject(s) - psychology , object (grammar) , face (sociological concept) , cognitive psychology , perception , cognition , fusiform face area , artificial intelligence , face perception , computer vision , computer science , neuroscience , social science , sociology
Scanning young children while they watch short, engaging, commercially‐produced movies has emerged as a promising approach for increasing data retention and quality. Movie stimuli also evoke a richer variety of cognitive processes than traditional experiments, allowing the study of multiple aspects of brain development simultaneously. However, because these stimuli are uncontrolled, it is unclear how effectively distinct profiles of brain activity can be distinguished from the resulting data. Here we develop an approach for identifying multiple distinct subject‐specific Regions of Interest (ssROIs) using fMRI data collected during movie‐viewing. We focused on the test case of higher‐level visual regions selective for faces, scenes, and objects. Adults ( N = 13) were scanned while viewing a 5.6‐min child‐friendly movie, as well as a traditional localizer experiment with blocks of faces, scenes, and objects. We found that just 2.7 min of movie data could identify subject‐specific face, scene, and object regions. While successful, movie‐defined ssROIS still showed weaker domain selectivity than traditional ssROIs. Having validated our approach in adults, we then used the same methods on movie data collected from 3 to 12‐year‐old children ( N = 122). Movie response timecourses in 3‐year‐old children's face, scene, and object regions were already significantly and specifically predicted by timecourses from the corresponding regions in adults. We also found evidence of continued developmental change, particularly in the face‐selective posterior superior temporal sulcus. Taken together, our results reveal both early maturity and functional change in face, scene, and object regions, and more broadly highlight the promise of short, child‐friendly movies for developmental cognitive neuroscience.