z-logo
open-access-imgOpen Access
Elucidating the structural–functional connectome of language in glioma‐induced aphasia using nTMS and DTI
Author(s) -
Zhang Haosu,
Ille Sebastian,
Sogerer Lisa,
Schwendner Maximilian,
Schröder Axel,
Meyer Bernhard,
Wiestler Benedikt,
Krieg Sandro M.
Publication year - 2022
Publication title -
human brain mapping
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.005
H-Index - 191
eISSN - 1097-0193
pISSN - 1065-9471
DOI - 10.1002/hbm.25757
Subject(s) - arcuate fasciculus , aphasia , glioma , connectome , tractography , neuroscience , transcranial magnetic stimulation , primary progressive aphasia , fractional anisotropy , psychology , corticospinal tract , medicine , diffusion mri , magnetic resonance imaging , functional connectivity , pathology , stimulation , radiology , dementia , disease , cancer research , frontotemporal dementia
Glioma‐induced aphasia (GIA) is frequently observed in patients with newly diagnosed gliomas. Previous studies showed an impact of gliomas not only on local brain regions but also on the functionality and structure of brain networks. The current study used navigated transcranial magnetic stimulation (nTMS) to localize language‐related regions and to explore language function at the network level in combination with connectome analysis. Thirty glioma patients without aphasia (NA) and 30 patients with GIA were prospectively enrolled. Tumors were located in the vicinity of arcuate fasciculus‐related cortical and subcortical regions. The visualized ratio (VR) of each tract was calculated based on their respective fractional anisotropy (FA) and maximal FA. Using a thresholding method of each tract at 25% VR and 50% VR, DTI‐based tractography was performed to construct structural brain networks for graph‐based connectome analysis, containing functional data acquired by nTMS. The average degree of left hemispheric networks ( M left ) was higher in the NA group than in the GIA group for both VR thresholds. Differences of global and local efficiency between 25% and 50% VR thresholds were significantly lower in the NA group than in the GIA group. Aphasia levels correlated with connectome properties in M left and networks based on positive nTMS mapping regions ( M pos ). A more substantial relation to language performance was found in M pos and M left compared to the network of negative mapping regions ( M neg ). Gliomas causing deterioration of language are related to various cerebral networks. In NA patients, mainly M neg was impacted, while M pos was impacted in GIA patients.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here