z-logo
open-access-imgOpen Access
Weighted network measures reveal differences between dementia types: An EEG study
Author(s) -
Mehraram Ramtin,
Kaiser Marcus,
Cromarty Ruth,
Graziadio Sara,
O'Brien John T.,
Killen Alison,
Taylor JohnPaul,
Peraza Luis R.
Publication year - 2020
Publication title -
human brain mapping
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.005
H-Index - 191
eISSN - 1097-0193
pISSN - 1065-9471
DOI - 10.1002/hbm.24896
Subject(s) - dementia with lewy bodies , dementia , electroencephalography , neuroscience , psychology , disease , audiology , medicine , pathology
The diagnosis of dementia with Lewy bodies (DLB) versus Alzheimer's disease (AD) can be difficult especially early in the disease process. However, one inexpensive and non‐invasive biomarker which could help is electroencephalography (EEG). Previous studies have shown that the brain network architecture assessed by EEG is altered in AD patients compared with age‐matched healthy control people (HC). However, similar studies in Lewy body diseases, that is, DLB and Parkinson's disease dementia (PDD) are still lacking. In this work, we (a) compared brain network connectivity patterns across conditions, AD, DLB and PDD, in order to infer EEG network biomarkers that differentiate between these conditions, and (b) tested whether opting for weighted matrices led to more reliable results by better preserving the topology of the network. Our results indicate that dementia groups present with reduced connectivity in the EEG α band, whereas DLB shows weaker posterior–anterior patterns within the β‐band and greater network segregation within the θ‐band compared with AD. Weighted network measures were more consistent across global thresholding levels, and the network properties reflected reduction in connectivity strength in the dementia groups. In conclusion, β‐ and θ‐band network measures may be suitable as biomarkers for discriminating DLB from AD, whereas the α‐band network is similarly affected in DLB and PDD compared with HC. These variations may reflect the impairment of attentional networks in Parkinsonian diseases such as DLB and PDD.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here