
Structural connectivity profile supports laterality of the salience network
Author(s) -
Zhang Yaodan,
Suo Xinjun,
Ding Hao,
Liang Meng,
Yu Chunshui,
Qin Wen
Publication year - 2019
Publication title -
human brain mapping
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.005
H-Index - 191
eISSN - 1097-0193
pISSN - 1065-9471
DOI - 10.1002/hbm.24769
Subject(s) - human connectome project , laterality , psychology , neuroscience , default mode network , functional magnetic resonance imaging , lateralization of brain function , functional connectivity , human brain , anterior cingulate cortex , salience (neuroscience) , connectome , diffusion mri , magnetic resonance imaging , cognition , medicine , radiology
The salience network (SN) is mainly involved in detecting and filtering multimodal salient stimuli, and mediating the switch between the default mode network and central executive network. Early studies have indicated a right‐sided dominance in the functional organization of the SN; however, the anatomical basis of the functional lateralization remains unclear. Here, we hypothesized that the structural connectivity profile between the frontoinsular cortex (FIC) and dorsal anterior cingulate cortex (dACC), which are two core hubs of the SN, is also dominant in the right hemisphere. Based on diffusion and resting‐state functional magnetic resonance imaging (rfMRI) of adult healthy volunteers in independent datasets, we found a stable right‐sided laterality of both the FIC‐dACC structural and functional connectivity in both the human connectome project cohort and a local Chinese cohort. Furthermore, a significant effect of aging on the integrity of the right FIC‐dACC structural connectivity was also identified. The right‐sided laterality of the structural organization of the SN may help us to better understand the functional roles of the SN in the normal human brain.