z-logo
open-access-imgOpen Access
Neural correlates of top‐down modulation of haptic shape versus roughness perception
Author(s) -
Mueller Stefanie,
Haas Benjamin,
Metzger Anna,
Drewing Knut,
Fiehler Katja
Publication year - 2019
Publication title -
human brain mapping
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.005
H-Index - 191
eISSN - 1097-0193
pISSN - 1065-9471
DOI - 10.1002/hbm.24764
Subject(s) - postcentral gyrus , functional magnetic resonance imaging , psychology , haptic technology , perception , precentral gyrus , neuroscience , computer science , artificial intelligence , magnetic resonance imaging , medicine , radiology
Exploring an object's shape by touch also renders information about its surface roughness. It has been suggested that shape and roughness are processed distinctly in the brain, a result based on comparing brain activation when exploring objects that differed in one of these features. To investigate the neural mechanisms of top‐down control on haptic perception of shape and roughness, we presented the same multidimensional objects but varied the relevance of each feature. Specifically, participants explored two objects that varied in shape (oblongness of cuboids) and surface roughness. They either had to compare the shape or the roughness in an alternative‐forced‐choice‐task. Moreover, we examined whether the activation strength of the identified brain regions as measured by functional magnetic resonance imaging (fMRI) can predict the behavioral performance in the haptic discrimination task. We observed a widespread network of activation for shape and roughness perception comprising bilateral precentral and postcentral gyrus, cerebellum, and insula. Task‐relevance of the object's shape increased activation in the right supramarginal gyrus (SMG/BA 40) and the right precentral gyrus (PreCG/BA 44) suggesting that activation in these areas does not merely reflect stimulus‐driven processes, such as exploring shape, but also entails top‐down controlled processes driven by task‐relevance. Moreover, the strength of the SMG/PreCG activation predicted individual performance in the shape but not in the roughness discrimination task. No activation was found for the reversed contrast (roughness > shape). We conclude that macrogeometric properties, such as shape, can be modulated by top‐down mechanisms whereas roughness, a microgeometric feature, seems to be processed automatically.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here