z-logo
open-access-imgOpen Access
Experimental design modulates variance in BOLD activation: The variance design general linear model
Author(s) -
Gaut Garren,
Li Xiangrui,
Lu ZhongLin,
Steyvers Mark
Publication year - 2019
Publication title -
human brain mapping
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.005
H-Index - 191
eISSN - 1097-0193
pISSN - 1065-9471
DOI - 10.1002/hbm.24677
Subject(s) - variance (accounting) , linear model , analysis of variance , general linear model , psychology , computer science , statistics , mathematics , economics , accounting
Abstract Typical fMRI studies have focused on either the mean trend in the blood‐oxygen‐level‐dependent (BOLD) time course or functional connectivity (FC). However, other statistics of the neuroimaging data may contain important information. Despite studies showing links between the variance in the BOLD time series (BV) and age and cognitive performance, a formal framework for testing these effects has not yet been developed. We introduce the variance design general linear model (VDGLM), a novel framework that facilitates the detection of variance effects. We designed the framework for general use in any fMRI study by modeling both mean and variance in BOLD activation as a function of experimental design. The flexibility of this approach allows the VDGLM to (a) simultaneously make inferences about a mean or variance effect while controlling for the other and (b) test for variance effects that could be associated with multiple conditions and/or noise regressors. We demonstrate the use of the VDGLM in a working memory application and show that engagement in a working memory task is associated with whole‐brain decreases in BOLD variance.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here