
Spatial source phase: A new feature for identifying spatial differences based on complex‐valued resting‐state fMRI data
Author(s) -
Qiu Yue,
Lin QiuHua,
Kuang LiDan,
Gong XiaoFeng,
Cong Fengyu,
Wang YuPing,
Calhoun Vince D.
Publication year - 2019
Publication title -
human brain mapping
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.005
H-Index - 191
eISSN - 1097-0193
pISSN - 1065-9471
DOI - 10.1002/hbm.24551
Subject(s) - independent component analysis , functional magnetic resonance imaging , spatial normalization , resting state fmri , pattern recognition (psychology) , spatial analysis , computer science , voxel , artificial intelligence , salience (neuroscience) , default mode network , neuroscience , psychology , mathematics , statistics
Spatial source phase, the phase information of spatial maps extracted from functional magnetic resonance imaging (fMRI) data by data‐driven methods such as independent component analysis (ICA), has rarely been studied. While the observed phase has been shown to convey unique brain information, the role of spatial source phase in representing the intrinsic activity of the brain is yet not clear. This study explores the spatial source phase for identifying spatial differences between patients with schizophrenia (SZs) and healthy controls (HCs) using complex‐valued resting‐state fMRI data from 82 individuals. ICA is first applied to preprocess fMRI data, and post‐ICA phase de‐ambiguity and denoising are then performed. The ability of spatial source phase to characterize spatial differences is examined by the homogeneity of variance test (voxel‐wise F ‐test) with false discovery rate correction. Resampling techniques are performed to ensure that the observations are significant and reliable. We focus on two components of interest widely used in analyzing SZs, including the default mode network (DMN) and auditory cortex. Results show that the spatial source phase exhibits more significant variance changes and higher sensitivity to the spatial differences between SZs and HCs in the anterior areas of DMN and the left auditory cortex, compared to the magnitude of spatial activations. Our findings show that the spatial source phase can potentially serve as a new brain imaging biomarker and provide a novel perspective on differences in SZs compared to HCs, consistent with but extending previous work showing increased variability in patient data.