z-logo
open-access-imgOpen Access
Perfusion weighted imaging using combined gradient/spin echo EPIK: Brain tumour applications in hybrid MR‐PET
Author(s) -
Shah N. Jon,
Silva Nuno André,
Yun Seong Dae
Publication year - 2021
Publication title -
human brain mapping
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.005
H-Index - 191
eISSN - 1097-0193
pISSN - 1065-9471
DOI - 10.1002/hbm.24537
Subject(s) - single shot , scanner , physics , computer science , gradient echo , spin echo , nuclear magnetic resonance , perfusion scanning , echo (communications protocol) , magnetic resonance imaging , biomedical engineering , materials science , perfusion , artificial intelligence , medicine , radiology , optics , computer network
Abstract Advanced perfusion‐weighted imaging (PWI) methods that combine gradient echo (GE) and spin echo (SE) data are important tools for the study of brain tumours. In PWI, single‐shot, EPI‐based methods have been widely used due to their relatively high imaging speed. However, when used with increasing spatial resolution, single‐shot EPI methods often show limitations in whole‐brain coverage for multi‐contrast applications. To overcome this limitation, this work employs a new version of EPI with keyhole (EPIK) to provide five echoes: two with GEs, two with mixed GESE and one with SE; the sequence is termed “GESE‐EPIK.” The performance of GESE‐EPIK is evaluated against its nearest relative, EPI, in terms of the temporal signal‐to‐noise ratio (tSNR). Here, data from brain tumour patients were acquired using a hybrid 3T MR‐BrainPET scanner. GESE‐EPIK resulted in reduced susceptibility artefacts, shorter TEs for the five echoes and increased brain coverage when compared to EPI. Moreover, compared to EPI, EPIK achieved a comparable tSNR for the first and second echoes and significantly higher tSNR for other echoes. A new method to obtain multi‐echo GE and SE data with shorter TEs and increased brain coverage is demonstrated. As proposed here, the workflow can be shortened and the integration of multimodal clinical MR‐PET studies can be facilitated.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here