z-logo
open-access-imgOpen Access
The temporal dynamics of structure and content in sentence comprehension: Evidence from fMRI‐constrained MEG
Author(s) -
Matchin William,
Brodbeck Christian,
Hammerly Christopher,
Lau Ellen
Publication year - 2019
Publication title -
human brain mapping
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.005
H-Index - 191
eISSN - 1097-0193
pISSN - 1065-9471
DOI - 10.1002/hbm.24403
Subject(s) - sentence , sentence processing , syntax , inferior frontal gyrus , psychology , temporal cortex , comprehension , semantics (computer science) , superior temporal gyrus , functional magnetic resonance imaging , temporal lobe , context (archaeology) , middle temporal gyrus , magnetoencephalography , brain activity and meditation , supramarginal gyrus , cognitive psychology , computer science , artificial intelligence , neuroscience , electroencephalography , biology , paleontology , epilepsy , programming language
Humans have a striking capacity to combine words into sentences that express new meanings. Previous research has identified key brain regions involved in this capacity, but little is known about the time course of activity in these regions, as hemodynamic methods such as fMRI provide little insight into temporal dynamics of neural activation. We performed an MEG experiment to elucidate the temporal dynamics of structure and content processing within four brain regions implicated by fMRI data from the same experiment: the temporo‐parietal junction (TPJ), the posterior temporal lobe (PTL), the anterior temporal lobe (ATL), and the anterior inferior frontal gyrus (IFG). The TPJ showed increased activity for both structure and content near the end of the sentence, consistent with a role in incremental interpretation of event semantics. The PTL, a region not often associated with core aspects of syntax, showed a strong early effect of structure, consistent with predictive parsing models, and both structural and semantic context effects on function words. These results provide converging evidence that the PTL plays an important role in lexicalized syntactic processing. The ATL and IFG, regions traditionally associated with syntax, showed minimal effects of sentence structure. The ATL, PTL and IFG all showed effects of semantic content: increased activation for real words relative to nonwords. Our fMRI‐guided MEG investigation therefore helps identify syntactic and semantic aspects of sentence comprehension in the brain in both spatial and temporal dimensions.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here